Microbial Ecology of Foods

Dean O. Cliver

Epide	emiology te
<u>Геат 1</u>	Team 2
Гyann Blessington	Kristin Ahrens
Rebecca Garabed	Sharon Hunt Gerardo
Kullanart Tongkhao	Bradley Olson
<u>Геат 3</u>	Team 4
Thuyvan Lam	Shirin Jamshidi
Anika Singla	Thomas Kohler
Christopher Theofel	

A food is an ecosystem for microbes

- ◆They don't "know" they are in food!
- ◆Bacteria & molds may multiply, survive, or die.

A food is an ecosystem for microbes

- ◆Viruses & parasites can only persist or be inactivated (die, lose infectivity).
- ◆Most attention devoted to fates of bacterial pathogens.

Pathogenic bacteria in food: potential "outcomes"

- ◆Persistence: viable, numbers unchanged (lag or stationary phase or sporulation)
- ◆Growth (multiplication): rate parameter (variable) based on doubling time

Pathogenic bacteria in food: potential "outcomes"

- ◆Death: another rate parameter (cf. viable-nonculturable)
- ◆Sporulation: another defense (species)
- ◆Toxigenesis: growth is necessary, but possibly not sufficient

Growth curve biology

◆Spores & lag phase cells quiescent; adaptation to environmental conditions = selecting needed enzymes (activating appropriate genes) from broad bacterial repertoire.

Growth curve biology

- ◆Multiplying (doubling) cells are metabolically active, often adapting; not all metabolically active cells are multiplying.
- ♦ Stress causes adaptation or injury.

Growth curve biology

- ◆Stationary phase may represent quiescence or (more often) growth rate = death rate.
- ♦Some injured cells appear dead ("viable nonculturable").
- ◆Some dead cells autolyze.

Bacteria in broth vs food

- ◆Broth: "planktonic cells"
- ◆Bacteria tend to aggregate, attach to surfaces, form colonies or biofilms
- ◆Foods = solid matrix, microenvironments
- **◆**Pathogens outnumbered

Research vs real food

- ◆Food contaminants (water, air, soil, raw material, feces) have mixed microflora.
- ◆Food ecosystem may select one organism

Research vs real food

- ◆At high levels, bacteria signal each other chemically ("consensus")
- ◆Different species interact competitively, but sometimes beneficially

Research vs real food

- ♦ "Programmed" successions
- ♦ Genetic exchanges among strains or species
- ◆Toxigenic agents (including molds) *grow* under conditions that do not permit toxigenesis.

Major factors (interact)

- **◆**Temperature
- $\bullet E_{\rm h}$
- $\bullet a_{\mathbf{w}}$
- ◆pH (specific cations & anions)
- ♦Nutrients available
- ♦Physical structure
- **♦**Microflora
- ◆Antimicrobial agents

Temperatures for Thermophiles

♦Minimum: 40–45°C

◆Optimum: 55-75°C

◆Maximum: 60-90°C

Temperatures for Mesophiles

♦Minimum: 5–15°C

♦Optimum: 30–45°C

◆Maximum: 35–47°C

Temperatures for Psychrophiles

♦Minimum: -5-+5°C

♦Optimum: 12-15°C

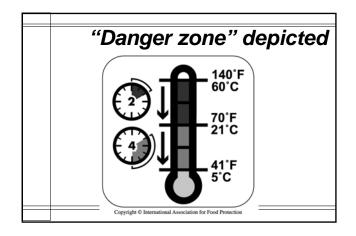
♦Maximum: 15-20°C

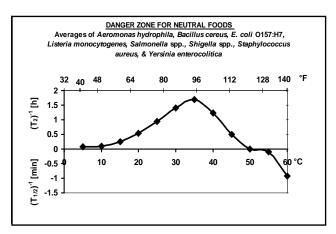
Temperatures for Psychrotrophs

◆Minimum: -5-+5°C

♦Optimum: 25–30°C

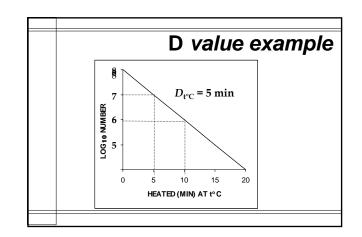
♦Maximum: 30–35?°C

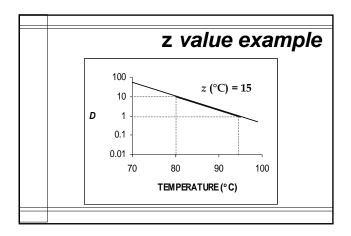

(cf. handout)


Cold: liquid or solid water?

- Freezing kills some cells, frozen storage preserves
- ◆Psychrotrophs grow slowly in refrigerated food

Warm = near optimum?


- ◆ Food spoilage promoted; test of sanitation
- ◆"Danger Zone": 4-60°C (40-140°F) or 5-57°C (41-135°F)
- ◆Rapid transition from hot to cold or cold to hot



Hot—temps > max for growth cause death

- ◆D value: time for decimal reduction at t°C; organisms are in log death phase
- ◆z value: temperature change (°C) to reduce the D value 10fold

Heat

- ◆Cooking, blanching, pasteurization not for "commercial sterility"
- **◆**Cells in log phase are more heat-sensitive

Heat

- ◆"Heat-shock" proteins aid adaptation; some produced in response to other stresses.
- Mesophiles or psychrotrophs infectious agents must be able to multiply at body temperature.

Tyndallization: boiling on 3 days

- ◆Day 1: vegetative cells killed, spores heat-shocked
- ◆Day 2: veg cells from spores killed, last spores heat-shocked
- ◆Day 3: vegetative cells from final spores killed; endpoint: sterility

Eh

- ◆Aerobic (>0 mV), microaerophiles, facultative, anaerobic (<0 mV)
- ◆"Strict" aerobes $E_h > 0$ mV, "obligate" anaerobes $E_h < -300$ mV

Eh

- ◆ Facultative organisms often use available energy more efficiently under aerobic conditions
- ◆C. perfringens may not start growing under aerobic conditions, but is not inhibited by oxygen once growth begins.

Eh

- $\bullet E_h$ hard to measure in foods
- **◆**Live foods metabolize or bind oxygen
- ◆Packaging, modified atmosphere
- **♦**Molds generally strict aerobes

Water activity—"a_w"

Water available for microbial growth, based on water present and on binding by solutes such as salt or sugar; equilibrium relative humidity ÷ 100; range is 0 to 1.00

	Approximate a _w of s	ome foods
*	Fresh fruit or vegetables	<u>≥</u> 0.97
♦	Fresh poultry or fish	<u>></u> 0.98
♦	Fresh meats	<u>></u> 0.95
♦	Juices, fruit & vegetable	0.97
♦	Cheese, most types	≥0.91
♦	Honey	0.54 - 0.75
♦	Cereals	0.10-0.20
	 	

Minimum a _w for some foodborne pathogens		
◆Salmonella	0.93	
◆C. botulinum	0.93	
◆Staphylococcus aureus	0.85	
◆(Most yeasts)	0.88	
♦ Most molds	0.75	

pH: hydrogen-ion potential Foods range from pH 7 downward. Acidification inhibits

- ◆Acidification inhibits spoilage & growth of many pathogens.
- ♦ "Low acid" (bot) $pH \ge 4.6$

pH values	pH values of some foods		
♦ Egg white	7.6-9.5		
♦ Milk	6.3-6.8		
◆Chicken	5.5-6.4		
♦ Beef	5.3-6.2		
◆Cheeses, most	5.0-6.1		
◆ Tomatoes	3.7-4.9		
♦ Apples	2.9-3.5		

Important minimum pH values for growth of microbes in foods

- ◆Clostridium botulinum 4.8-5.0
- ◆Salmonella (most types) 4.5–5.0
- ◆Staphylococcus aureus 4.0–4.7
- ◆Yeasts & molds 1.5**-**3.5

◆"Organic" acids (e.g., lactic, acetic, etc.) more effective antimicrobials than mineral acids

♦ Most effective undissociated; at a given pH, molar quantity of organic acid >> than that of a mineral acid.

Nutrients available

- ◆C & N sources required, sometimes "growth factors"
- ◆ Foods generally good C & N sources
- ◆Other factors, then nutrients decide which organism predominates

Physical structure

- **◆**Bacteria grow on surfaces when they can.
- ♦Some surfaces (melon rind, eggshell) limit access to nutrients.
- ◆Food matrix: molds often penetrate better than bacteria.

Physical structure

- •If water & solutes cannot diffuse freely, local variations in E_h , a_w , and pH are highly possible.
- High viscosity or strongly cellular structure can greatly limit heat transfer (both heating and cooling) in foods.

Microflora

- ◆Bacteria in foods: variety & competition
- ♦ Microbial growth may lower E_h & pH; molds use organic acids as carbon sources & raise pH.

Microflora

- ◆Bacteria may produce acetic, lactic, and other acids as fermentation products.
- ♦Some produce bacteriocins proteins that have a highly-specific lethal effect on closely related organisms.

Competing organisms

- ◆Staphylococcus aureus
- ◆Clostridium botulinum

"Programmed succession"

- ♦ Milk: rapid lactic acid producers (lactococci), then
- ◆Slower acid producers (lactobacilli) that tolerate lower pH's, then
- ◆Acid-stable putrefactive (proteolytic) bacteria and finally,
- ♦ Molds (metabolite tolerance).

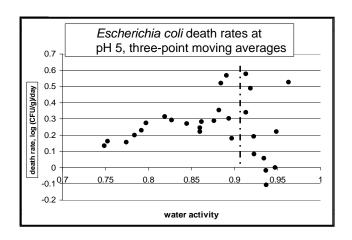
Antimicrobials: preservatives

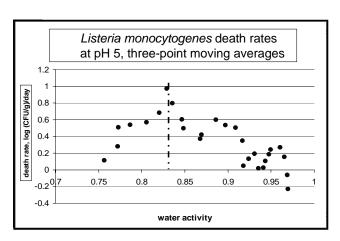
- ♦ Materials added specifically to inhibit microbial growth
- ◆Nitrite for "curing" meats, vs C. botulinum.
- ♦ Sorbates, benzoates, & other salts of organic acids bacteriostatic, not bactericidal

Antimicrobials: preservatives

- ◆CO₂ & SO₂ long used in foods; SO₂ is highly toxic to a small segment of the population.
- ◆Spices especially those with strong flavors — often viewed as preservatives or disinfectants. Probably bacteriostatic, at best.

Antimicrobials: radiation


♦UV widely applicable to decontamination of food surfaces, food contact surfaces, & water used in food processing; limited penetration.


Antimicrobials: radiation

- ◆Surface efficiency enhanced by pulsed laser application (some pulsed laser applications use visible light).
- **◆**Ionizing radiation discussed earlier in course.

Interactions

◆The pH that permits growth of a bacterium near its optimal temperature may be limiting at a less favorable temperature.

Interactions

◆Safe foods "designed" combining slightly unfavorable conditions for several parameters to stop target pathogens and spoilage organisms.

Interactions

- ◆This kind of food design has heavy safety implications; modeling (discussed last time) is used to make choices, then validated by inoculated-pack, product-abuse trials before a new food product is marketed.
- ◆Applied in HACCP.

Pathogen Modeling Program (PMP)

http://www.arserrc.gov/MFS/PATHOGEN.HTM

Summary

- **♦** Food ecosystems govern which microorganisms may grow in them.
- Factors, such as temperature, a_w , pH, etc., interact to determine the microbiologic safety of a food.
- **◆**Food processing takes account of these factors to ensure food safety.